
ISOBUS C3.5
Quick start instructions



www.epec.fi22.6.2022

General

• These instructions concentrate on how to start ISOBUS C3.5 project and 
quick overview on available features and the differences between C2.3 
versus C3.5.

• SDK 4.6 does not include programming manual for ISOBUS C3.5

• Manual will be added to future SDK

• For library interface documentation, refer to ISOBUS library in CODESYS 
3.5 IDE’s Library manager

• For “how to” examples refer to:

• this quick start guide

• example applications available in Epec Extranet



www.epec.fi22.6.2022

Products

• ISOBUS C3.5 is currently available in MultiTool for EC44-020

• Device description 3.5.13.62 or newer is required

• ISOBUS license is required in ECU

• Library will give error if license is not valid

• EC44-020E functional version includes ISOBUS license

• EC44-020E hardware is not AEF conformance tested

→end-user application cannot receive AEF conformance test approval

• ISOBUS CAN sample point initialization is not implemented. This does not 
affect protocol functionality.



www.epec.fi22.6.2022

Example applications

• Following example test applications are available in Epec Extranet

• VTComplexEC44

• VT client examples for supported object types

• VTAuxFunctionsEC44

• Includes AUX Function objects for all of the AUX-N function types

• VT client datamasks are used to visualize the AUX input 
values/states for testing purposes

• EpecSprayerEC44

• TC client application example

• TC-BAS

• TC-SC in 2 booms, 8 sections each

• TC-GEO with 2 rate controls (one BIN per boom)

• VT client datamasks are used to visualize the TC control states 
and values for testing purposes



www.epec.fi22.6.2022

Library

• ISOBUS protocols are implemented in a single C3.5 ISOBUS library 
which includes functionalities from following C2.3 libraries

• ISOBUS.lib

• ISOBUS_VT.lib

• ISOBUS_TC.lib

• ExtraBins.lib

• J1939 and AddressClaiming are separate libraries as in C2.3

• SDK4.6 includes ISOBUS library version 1.0.0.0



www.epec.fi22.6.2022

Library & code template

• Library uses C3.5 features such as methods and interfaces → library is not 
interface compatible with C2.3 library even if similar functionalities are 
included

• Code template structure is also different from C2.3 and is now more like in 
CANopen implementation

• Generated code and GVLs depend on selected options in MultiTool

• Library initialization methods are automatically executed by code template



www.epec.fi22.6.2022

Object pool

• ISOBUS object pool is integrated to the CODESYS application so only 
application is loaded to the ECU (generated to GVL array but directed to 
flash memory in S/E series units)

• Object pool is automatically updated when CODESYS code template is 
generated or updated using project_update python script. So, there is no 
separate ”import ISOBUS” script in C3.5.



www.epec.fi22.6.2022

Migrating C2.3 to C3.5
• ISOBUS C3.5 unit can be created :

• By configuring new EC44-020 unit
• Using MultiTool’s Change unit type feature to convert MultiTool configuration from e.g. 3724 to EC44

• General instructions for using change unit type is in programming manual’s Programming > How to change 
unit type

• Following are ISOBUS specific notes for change unit type:
• ISOBUS is not available to CAN1 in S/E series units
• ISOBUS resource template for C3.5 is different from C2.3 so don’t copy whole ISOBUS folder from C2.3 

application.
• When converting C2.3 unit to C3.5 the Create CODESYS project always needs to be used.
• After change unit type is used in MultiTool it is recommended to either rename the old ECU’s folder 

or rename the EC44 unit in MultiTool. This is done to avoid unnecessary leftover files from C2.3 
project in your C3.5 ISOBUS folder.

• After C3.5 project template has been created the Jetter ISO-Designer project and TC’s object pool xml 
file can be copied from old project. Code template update will import the objects.

• C3.5 ISO-Designer template project uses version 5.5.1 (C2.3 is 4.0.6). ISO-Designer can convert older 
project to newer version, but the old version should work also (not tested)

• Since the library interfaces and code template differs from C2.3 it is recommended to re-implement 
existing program logic case-by-case basis. First generate the C3.5 code template and see what’s 
automatically provided since there are more automatically generated code compared to C2.3.

• Also check the example applications for use-case examples



www.epec.fi22.6.2022

Features

• Implemented:

• All main protocol options:

• VT client (UT2.0)

• AUX-N Functions

• TC client (TC1.0)

• TECU class 2 PGN interface

• Diagnostics (Min CF 1.0)

• MultiTool support

• Code template support



www.epec.fi22.6.2022

Features, VT

• VT client in code template is found at G_ISOBUS_VT.Client

• Many of the C2.3 functionalities are now methods (instead of functions or inputs)

• Mask handlers are optionally created by application so they are not enforced by 
the code template as in C2.3. C3.5 code template executes VT_MainMaskHandler
which executes the initialized application mask handlers.

• Library includes several high-level object handlers which replace the PRGs from 
C2.3 code template. C3.5 code template executes VT_MainObjectHandler which 
is used to update the object specific handlers.

• Code template’s G_ISOBUS_VT_ObjHandlers GVL includes automatically 
generated handler instances (buttons, softkeys, input/output numbers). 
These are also initialized automatically in code template.

• String handlers are implemented by library but defined and initialized by 
application when required

• More handlers may be added to library in future releases

• It is recommended to use high-level handlers for functionalities which they 
are available for (instead of low-level VT client interfaces)



www.epec.fi22.6.2022

Examples, VT version label

• If checksum is used, the version label behavior is as in C2.3. Otherwise, 
application may define the whole 7 characters label



www.epec.fi22.6.2022

Examples, VT instance & move

• Preferred instance and move to another VT works in similar way than at 
C2.3 but they are used by methods instead of functions



www.epec.fi22.6.2022

Examples, VT datamask

• Mask handler is created in similar way than VXD callbacks by creating 
FB POU and implementing IVTMaskHandler interface

• The mask interface methods are automatically executed when mask 
is visible

• Future note: Due to SP10 safety project restrictions these need to 
be implemented in application library at safety projects. This will 
restrict the direct access to code template variables and pointers 
may need to be used by application. This does not apply to non-
safety units e.g. EC44.

• Application needs to initialize mask instance to main handler



www.epec.fi22.6.2022

Examples, VT numeric output 

• Handler instance is automatically generated. If numeric variable is 
used, the handler is created for variable object. Otherwise, the instance 
is created for the output object (e.g. output number).

• Same numeric variable may be used by multiple output objects but do 
not use the same variable in input objects

• Updating output value:

• Send can be triggered manually by SendTrigger method or periodically 
by using SetSendInterval

• Minimum send interval can be set by SetInhibitTime method



www.epec.fi22.6.2022

Examples, VT numeric input 

• Handler instance is automatically generated. If numeric variable is 
used, the handler is created for variable object. Otherwise, the instance 
is created for the input object (e.g. input number).

• Optionally default value can be sent to input object:

• NewData output is TRUE when new value is received. Flag can be reset 
by application:

• Received value is in handler’s o_Value output



www.epec.fi22.6.2022

Examples, VT softkey

• Handler instance is automatically generated for Key objects

• Special alarm ACK instance is always generated for receiving alarm ACK 
button status (this is not implemented in C2.3)

• NewData output is TRUE when new state is received. Flag can be reset 
by application:

• Softkey statuses are in handler’s outputs



www.epec.fi22.6.2022

Examples, VT button

• Handler instance is automatically generated for Button objects

• NewData output is TRUE when new state is received. Flag can be reset 
by application:

• Button statuses are in handler’s outputs



www.epec.fi22.6.2022

Examples, VT string output

• String output handler is implemented by library but defined and 
initialized by application

• Create handler only for objects which you need to modify on-fly. 
Static texts do not need handler

• String output handler can:

• Send local string variable from application code using SetString
method

• Read string from language file using SetLanguageString method

• Initialization example:



www.epec.fi22.6.2022

Examples, VT string output, local string

• Send local string example:



www.epec.fi22.6.2022

Examples, VT string output, using languages

• Language file is found in project’s ISOBUS\Python\Languages folder

• Example how to send language string with string output handler:

• Default language can be initialized to language handler if selected 
language is not found:



www.epec.fi22.6.2022

Examples, VT string input

• String input handler is implemented by library but defined and 
initialized by application

• Application defines the string buffer where the input value is updated to

• Initialization example:

• NewData flag is set TRUE when new input text is received



www.epec.fi22.6.2022

Features, AUX-N

• AUX-N features are comparable to C2.3.

• AUX function variables are found in G_ISOBUS_VT_AUX GVL

• AUX Function handler instance is found in G_ISOBUS_VT GVL

• LoadPreferred is method instead of function:

• Refer to example application for more information



www.epec.fi22.6.2022

Features, TC

• TC client in code template is found at G_ISOBUS_TC.Client

• DDI variable array is found in G_ISOBUS_TC_DDI GVL

• Many of the C2.3 functionalities are now methods (instead of 
functions or inputs)

• DDOP configuration is done with methods

• Default thresholds/intervals can be set by methods if default 
set is used and requested by TC

• Same DDI object ID can be referenced in multiple elements. In 
C2.3 this is not supported.

• Refer to Epec sprayer example application for full application 
example



www.epec.fi22.6.2022

Examples, TC configuration

• TC DDOP serial number is set by code template

• TC DDOP version can be set by application:

• TC DDOP labels can be set by application:



www.epec.fi22.6.2022

Examples, TC configuration

• DDI disabling is more flexible versus C2.3

• ConfigDisableDDI disables single DDI variable

• ConfigDisableElement disables element and its DDI variable references

• If DDI exists in multiple elements, its disabled only if all element 
references are disabled or DDI object is disabled separately

• C2.3 supports only disabling of whole element and its DDI references

• Config methods can be used when TC client is in RECONFIGURATION state

• ConfigReady method is mandatory even if application does not disable any 
DDIs. Client will stay in RECONFIGURATION state until ready is triggered.

• ConfigResetDefault method can be used to re-enable all objects



www.epec.fi22.6.2022

Examples, TC configuration

• If DDI belongs in default set and TC sends default set request, the 
application can use TC client methods to set default settings

• Default set request flag is in TC client’s o_TCStatus output



www.epec.fi22.6.2022

Features, TECU

• Application data is located in G_ISOBUS_TECU.Data

• AUX valve command PGN (class 3 message) is not implemented at C3.5 
library because TIM feature is not implemented. Only TECU Class 2 or 
lower is supported.

• In C2.3 TECU interface is able to connect only to one TECU instance 
defined in MultiTool

• In C3.5 MultiTool defines maximum TECU instance count and library is 
able to receive tractor facilities message from multiple TECU devices

• Library uses the TECU facilities messages to determine which signals 
are implemented by which TECU instance. Lowest TECU instance 
number is prioritized. Standard defines that secondary TECU shall not 
send signals which are available by primary instance.



www.epec.fi22.6.2022

Features, Diagnostics

• Configuration data is located in G_ISOBUS_Diagnostics.Data

• Data is automatically initialized by code template

• If data needs to be changed on-fly, the raw PGN data can be updated 
by PGN specific method after data has been changed in GVL

• DM1 PGN is not implemented by ISOBUS library. The DM log 
functionality will be added to J1939 library in future SDK and ISOBUS 
applications will use J1939 implementation when available.

• Example applications temporarily include the DM PGN in application 
code for testing purposes



22.6.2022

THANK 
YOU!

For questions,
contact techsupport@epec.fi

www.epec.fi

https://www.instagram.com/epecoy/
https://www.facebook.com/EpecControlSystems
https://www.linkedin.com/company/epec/
https://twitter.com/EpecAutomation
https://www.youtube.com/user/EpecControlSystems
mailto:techsupport@epec.fi
https://epec.fi/

